Tạp chí công nghệ Việt Nam

Phần 1: Cạm bẫy của các Đấng Tối Cao – Giải trí khoa học (tiếp 6)

0

Ta lấy bình quân tất cả các xác suất này trong khoảng [0, ½], sẽ có được xác suất cần tìm. Còn bài toán hai nhát cắt cũng tương tự vậy, tuy có phức tạp hơn nhiều.”. Xác suất này bằng 0,773 trong khi nếu dùng cách ép và cắt thì xác suất sẽ là 0,667.

Ấy vậy mà, khi phân tích bài toán trên, chúng tôi nhận thấy rằng, cách cắt trên chỉ là một trong những cách suy diễn của động từ “chia” mà thôi. Tuy động từ “chia” nghe có vẻ êm ái vậy, nhưng trong trường hợp bài toán này, nó rất là thiếu sót. Cần phải thêm bổ từ trả lời cho câu hỏi “chia như thế nào?”. Cách giải trên, nghĩ kỹ chúng ta sẽ thấy nó giống như cách người ta cắt bánh chưng bằng lạt vậy. Một đầu dây lạt người ta tựa vào điểm ngẫu nhiên nào đấy trên một cạnh, còn đầu kia, người ta chọn bất kỳ điểm nào đó của ba cạnh còn lại để đặt vào. Sau đó luồn xuống dưới và rút. Sợi dây lạt sẽ cắt miếng bánh thành hai phần.

Còn cắt bằng dao thì để tạo vết cắt, người ta thường tỳ dao vào một điểm nào đó trên chu vi bánh, sau đó xoay dao rồi ấn xuống. Cái ngẫu nhiên tạo ra được do cách chọn điểm đặt dao A, C và cách xoay dao hay góc xoay dao.

 

>>Xem thêm: Dịch vụ quay phim quảng cáo TVC

 

Phương pháp chia bánh “bẻ” khác hơn: người ta đưa hai tay vào một điểm nào đấy trên mặt bánh, sau đó bẻ theo đường thẳng (cũng có góc xoay tay, ngay tại một chỗ ấn tay, cũng có nhiều cách nhận được đường thẳng “vết bẻ” khác nhau). Bẻ xong, chọn một trong hai (dĩ nhiên là ngẫu nhiên) và bẻ tiếp. Không giống như bằng lạt và dao, cách này cho phép vết hai bất kỳ ở đâu. Trong trường hợp lạt và dao, bánh để nguyên thì hai đường cắt không thể cắt nhau được vì như thế sẽ chia ra bốn phần chứ không phải là ba.

Mời các bạn tìm lời giải cho các cách cắt này. Mặc định rằng, các vết cắt vuông góc với mặt bánh.

Có Tứ quý hay biết bao nhiêu:

Không, xin các bạn đừng nghĩ đó là “Long, Ly, Quy, Phượng”. Xác suất của cái Tứ Quý này bằng không. Hay nói đúng hơn nó bằng không trong thế giới thực của chúng ta. Ngoài Quy ra, thì các con vật khác đều do trí tưởng tượng của con người tạo nên. Biết đâu…chúng tồn tại trong thế giới khác?!. Tôi muốn nói đến Tứ Quý trong bài Tây 52 con bài kia. Khi đánh bài Tiến lên, Binh…, chúng ta ai ai cũng mừng khi trong bài của mình có bốn cây giống nhau về chất, ví dụ như bốn cây A, bốn cây K hay thậm chí bốn cây 3. Chắc nhiều người trong chúng ta đã không ít lần đặt câu hỏi: Vậy xác suất của Tứ Quý ta có thể nhận được là bao nhiêu? Và chính xác hơn ta đặt bài toán như sau:

Chia bộ bài Tây 52 cây thành bốn tay bài. Tìm xác suất sao cho có ít nhất một tay bài có Tứ Quý.

“Có gì đâu!” có người nói, “ta cứ lấy một tay bài, vì xác suất có Tứ Quý trong các tay bài đều bằng nhau nên khi tính được xác suất một tay bài, ta nhân cho 4 thì được xác suất có ít nhất một tay bài có Tứ Quý.”. Sau đấy, bạn ấy trình bày cách như sau:

Xác suất một tay bài có Tứ Quý bằng xác suất tay bài đó có ít nhất một Tứ Quý trong 13 chất bài nhân cho 13. Bởi vì các xác suất có ít nhất Tứ Quý của một chất bài nào đó đều bằng nhau. Vậy có bao nhiêu cách để chia bài cho một tay bài:

Vậy xác suất có ít nhất Tứ Quý A bằng 0,002641. Và xác suất có một Tứ Quý của bất kỳ một chất nào đó ở cả bốn tay bài bằng: 0,1373. Tức là cứ 7 lần chia sẽ có ít nhất một lần có Tứ Quý.

 

>>>Xem thêm: Dịch vụ quay phim sự kiện hội nghị – họp báo công ty

 

Các bạn thân mến! Chúng ta dễ thấy trong lập luận trên có hai điểm không đúng:

Thứ nhất: Nếu tính xác suất của tay bài có ít nhất một Tứ Quý bằng 13 xác suất có ít nhất Tứ Quý A, ta thấy có điểm vô lý. Ví dụ khi ta tính có ít nhất Tứ Quý A thì ta đã quét hết các trường hợp có Tứ Quý A kể cả trường hợp vừa có Tứ Quý A vừa có Tứ Quý K. Đến khi cộng thêm các cách có Tứ Quý K vào ta lại một lần nữa tính các trường hợp vừa có Tứ Quý K vừa có Tứ Quý A.

Thứ hai: Tương tự như trên, ta không thể tính xác suất có Tứ Quý của bốn tay bài bằng bốn lần xác suất một tay bài. Bởi vì, khi tính tất cả các trường hợp có Tứ Quý A ở tay bài 1 đã tính trường hợp có xác suất Tứ Quý K ở tay bài 2. Nhưng đến khi tính tất cả trường hợp có Tứ Quý ở bài 2 đã tính luôn trường hợp có Tứ Quý A ở bài 1. Vậy ta tính thành ra hai lần.

Để giải bài này, ta vận dụng biểu đồ Venn. Ví dụ ta có ba tập hợp A, B, C. Tính tập AUBUC.

\

Theo biểu đồ ta có thể tính được:

AUBUC=A + B + C – A∩B – A∩C – B∩C + A∩B∩C

Các bạn có thể tổng quát hoá lên cho n tập:

A1UA2U….UAn = ∑Ai – ∑Ai∩Aj + ∑Ai∩Aj∩Ak – ∑Ai∩Aj∩Ak∩Am + …..+(-1)n+1∑A1∩A2…∩An

ận dụng vào bài toán trên, ta gọi:

Ai: tập các trường hợp có ít nhất Tứ Quý i cho cả bốn tay bài.

Ai∩Aj: tập các trường hợp có ít nhất Tứ Quý i và j cho cả bốn tay bài.

….

A(12,i): tập các trường hợp có ít nhất 12 Tứ Quý trừ Tứ Quý i cho cả bốn tay bài.

Với 11=J, 12=Q, 13=K.

Ta có thể chứng minh được, trong mỗi tầng kết hợp các tập bằng nhau: Ví dụ A1=A2=…=A13,

A1∩A2=A2∩A3=….

Lại thấy, mỗi lần chia ta nhận được bốn tay bài và chúng có thể hoán cho nhau thành 4! cách. Nên ta chỉ lấy một cách là đủ (bất kỳ trạng thái nào của bốn tay bài đều có 4! cách hoán vị như vậy.). Bởi vậy, số trường hợp thật sự khác nhau khi chia 52 cây bài thành 4 sẽ là:

Ta tính tất cả trường hợp có ít nhất một Tứ Quý X nào đó:

∑(1 Tứ Quý):

Cách tính của bạn kia chính là lấy: ∑(1 Tứ Quý) chia cho tổng các trường hợp.

Tiếp tục, ta tính cho có ít nhất hai Tứ Quý X và Y nào đó:

Cách sắp xếp giữa X và Y sẽ là: X, Y cùng một tay bài, X, Y ở hai tay bài khác nhau:

Có 12×13/2=78 cách cho hai Tứ Quý khác nhau. Suy ra,∑(2 Tứ Quí) bằng:

Chỉ số này chỉ làm giảm xác suất như đã tính xuống: 0,0096 thành 0,1277. Không đáng kể, và các thành phần sau còn nhỏ hơn rất nhiều. Nếu có nhã hứng, các bạn có thể tính cho trường hợp có 3 Tứ

Quý và 4 Tứ Quí. Nhưng những thành phần này không đóng góp nhiều lắm để thay đổi xác suất nói trên. Chúng ta nhận thấy rằng, tuy cách ban đầu có sai sót, nhưng nó cũng rất gần với kết quả thật. Bởi vì, xác suất có hai tứ quí trong một lần chia bài rất nhỏ (1 trên 100). Và Tứ Quý hoàn toàn không khó như nhiều người lầm tưởng.[3], [4]

1. Thực tế, ta không cần phải vẽ hình phức tạp làm gì. Ta thấy, khi bẻ nhát đầu tiên, có thể điểm bẻ nằm ở bất kỳ ở đâu trên que, nhưng không mất tính tổng quát ta cho nó nằm ở nửa bên trái. Vì nếu nằm bên phải cũng là th đối xứng gương mà thôi. Gọi x là độ dài đoạn nhỏ, x nằm trong khoảng[0,1/2], P(1-x)-xác suất bằng cách nào đó ta chọn được đoạn lớn để bẻ tiếp theo.

Vậy xác suất bẻ hai lần để tạo được tam giác tại một giá trị x bằng P(1-x)x/(1-x). Lấy trung bình đại lượng này trong khoảng [0,1/2] ta được xác suất cần tìm.

Trong trường hợp máy chặt, ta có P(1-x)=1-x. Suy ra xác suất bằng:

Còn trường hợp bẻ P(1-x)=1/2, và xác suất như đã tính.

2. Nếu người bẻ lẫn lộn lung tung khi thả phần nào và cầm lại bẻ tiếp phần nào thì trên nguyên tắc xác suất bẻ được phần lớn hơn cũng chính là xác suất chọn một trong hai.

3. Tôi sẽ viết một bài về các trò chơi bài Tây 52 lá. Trong đó, nói cụ thể các vấn đề này hơn.

4. Sẽ có bạn hỏi “Thế, tác giả bài viết có chui vào bẫy không?”. Có, rất nhiều lần. Nhưng chúng tôi muốn nói các bạn rằng, những cạm bẫy là những hoa văn tuyệt mỹ tô điểm cho bức tranh xác suất tổng thể càng lung linh, càng huyền ảo hơn. Và chúng tôi bị mê hoặc bởi chúng. Cũng rất vui sướng vì điều đó.

Leave A Reply

Your email address will not be published.